

BINARY BLACK HOLE MERGERS IN THE FIRST ADVANCED LIGO OBSERVING RUN

Stephen Fairhurst

Cardiff University

for the LIGO Scientific and Virgo Collaborations

References Phys. Rev. X **6**, 041015 (2016) GW150914: PRL 116, 061102 (2016) GW151226: PRL 116, 241103 (2016)

• Flat, empty space is a solution to general relativity.

- Leading order correction, $h_{\mu\nu},$ satisfies wave equation
- These waves create a tidal distortion in space-time, $h = \frac{\delta L}{L}$

LIGO Generating gravitational waves

- Time varying mass quadrupole generates gravitational waves
- Binary system is ideal

$$h \sim \left(\frac{GM}{c^2 R}\right) \left(\frac{GM}{c^2 r}\right)$$

$$P \sim \frac{GM^2v^6}{c^5R^2}$$

For a black hole:

 $\frac{2GM}{c^2}$

A global network

LIGO Livingston Observatory

LIGO Hanford

100

LIGO Livingston

LIGO Hanford LIGO Livingston LIGO Hanford Observatory

LIGO The Scale of the Challenge

10⁻²² change in length of a LIGO arm: 10^{-18} m

LIGO The Scale of the Challenge

ground motion: 10⁻⁸ m (10¹⁰ × bigger) (10⁶ × bigger) (10¹² ×

laser wavelength: 10⁻⁶ m (10¹² × bigger)

gravitational wave: 10⁻¹⁸ m

ground motion: 10⁻⁸ m (10¹⁰ × bigger)

LIGO

Quadruple pendulum suspension system: 10⁷ + Active seismic isolation: 10³

thermal vibrations: 10⁻¹² m (10⁶ × bigger)

Ultra-high mechanical quality (Q ~ 10⁶) fusedsilica optics

isolates thermal motion into narrow frequency bands

GW150914

- In September 2015, we were in the final stages of preparation for first Advanced LIGO data run (O1).
- The very last step is a short "Engineering Run," during which on Sept 14 our online monitor recorded GW150914.
- We identified the signal within 3 minutes

- We responded by starting the data run officially, keeping all settings fixed and ran for 16 live days coincidence time (long enough to assess background levels, etc)
- First GW announcement reported on that data.
- O1 data taking continued until 12 Jan 2016

GW150914

GW150914

Identifying the signals

Binary Merger Search

 Use known waveforms to search for binary signals.

- Calculate Signal to Noise Ratio (SNR), ρ(t), identify maxima, and reweight by a χ² consistency measure.
- Require coincidence between detectors within 15 msec.
- Detection statistic: quadrature sum of the signal to noise in each detector.
- Background: Time shift by multiples of 0.1 seconds and repeat search.

LIGO

Statistical Significance

LIGO GW150914: A black hole binary

- Orbits decay due to emission of gravitational waves
- Leading order determined by "chirp mass"

LIGO GW150914: A black hole binary

- Binary is at least sixty times as massive as the sun.
- Bodies are in orbit until centres are separated by a few hundred km.

LIGO Measuring masses and spins

- Chirp mass
 - Leading order inspiral rate
- Mass ratio and spins
 - Change in amplitude / frequency evolution
 - "effective" spin has the dominant effect
- Misaligned spins lead to orbital precession

Cosmological effects

- Binary merger signal has a characteristic shape
 - Scales with the mass, M, of the system
- Redshift reduces observed frequencies
 - Indistinguishable from change in mass
 => measure M (1 +z)
- Amplitude scales

- inversely with the co-moving distance, D_c
- with the total mass, M
- Directly measure:
 - luminosity distance, $D_L = D_C (1 + z)$
 - Redshifted mass, M (1 + z)

.081 .081

DIFF Distance and sky position LIGO PRIFYSGOL ŶſÐ 75° 60° ∕H+ 45° GW151226 4.0 30° L-H Posterior PDF ($10^{-3} \mathrm{Mpc}^{-1}$ 15° 3.5 GW150914 -30° 30° -90° -150° -120° -60° 60° 90% 150° 0 3.0 GW151226 -15 LVT15101 2.5 H-L -30 2.0 H--45° GW150914 1.5 -60° 05 -75° 1.0 LVT151012 0.5 75° 60° 0.0 45° 500 1500 2000 250 0 1000 30° Distance (Mpc) LVT151012 15' $14^{\rm h}$ $22^{\rm h}$ $12^{\rm h}$ $10^{\rm h}$ 20^{h} $18^{\rm h}$ 16^{h} 0 -15 GW151226 -30 GW150914 -60° -75°

Event summary

Event	GW150914	GW151226	LVT151012
Signal-to-noise ratio ρ	23.7	13.0	9.7
False alarm rate FAR/yr^{-1}	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37
p-value	$7.5 imes 10^{-8}$	7.5×10^{-8}	0.045
Significance	$> 5.3\sigma$	$> 5.3\sigma$	1.7σ
Primary mass $m_1^{\text{source}}/M_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
Secondary mass $m_2^{ m source}/ m M_{\odot}$	$29.1^{+3.7}_{-4.4}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}
Chirp mass $\mathcal{M}^{\text{source}}/M_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$
Total mass $M^{ m source}/ m M_{\odot}$	$65.3^{+4.1}_{-3.4}$	$21.8^{+5.9}_{-1.7}$	37^{+13}_{-4}
Effective inspiral spin χ_{eff}	$-0.06^{+0.14}_{-0.14}$	$0.21^{+0.20}_{-0.10}$	$0.0^{+0.3}_{-0.2}$
Final mass $M_{\rm f}^{ m source}/{ m M}_{\odot}$	$62.3^{+3.7}_{-3.1}$	$20.8^{+6.1}_{-1.7}$	35_{-4}^{+14}
Final spin a _f	$0.68^{+0.05}_{-0.06}$	$0.74^{+0.06}_{-0.06}$	$0.66_{-0.10}^{+0.09}$
Radiated energy $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0^{+0.1}_{-0.2}$	$1.5^{+0.3}_{-0.4}$
Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} \times 10^{56}$	$3.1^{+0.8}_{-1.8} \times 10^{56}$
Luminosity distance $D_{\rm L}/{\rm Mpc}$	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}
Source redshift z	$0.09^{+0.03}_{-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20\substack{+0.09\\-0.09}$
Sky localization $\Delta\Omega/deg^2$	230	850	1600

Event summary

Event	GW150914	GW151226	LVT151012
Signal-to-noise ratio ρ	23.7	13.0	9.7
False alarm rate FAR/yr ⁻¹	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37
p-value	$7.5 imes 10^{-8}$	$7.5 imes 10^{-8}$	0.045
Significance	$> 5.3\sigma$	$> 5.3\sigma$	1.7σ
Primary mass $m_1^{\text{source}}/\text{M}_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
Secondary mass $m_2^{ m source}/ m M_{\odot}$	$29.1^{+3.7}_{-4.4}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}
Chirp mass $\mathcal{M}^{ ext{source}}/ ext{M}_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$
Total mass $M^{ m source}/ m M_{\odot}$	$65.3^{+4.1}_{-3.4}$	$21.8^{+5.9}_{-1.7}$	37^{+13}_{-4}
Effective inspiral spin $\chi_{\rm eff}$	$-0.06^{+0.14}_{-0.14}$	$0.21^{+0.20}_{-0.10}$	$0.0^{+0.3}_{-0.2}$
Final mass $M_{\rm f}^{\rm source}/{ m M}_{\odot}$	$62.3^{+3.7}_{-3.1}$	$20.8^{+6.1}_{-1.7}$	35_{-4}^{+14}
Final spin <i>a</i> .	0.68+0.05	$0.74^{+0.06}$	0.66 ^{+0.09}
Radiated energy $E_{\rm rad}/({\rm M}_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0^{+0.1}_{-0.2}$	$1.5^{+0.3}_{-0.4}$
Peak luminosity $\ell_{\text{peak}}/(\text{erg s}^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} imes 10^{56}$	$3.1^{+0.8}_{-1.8} \times 10^{56}$
Lummosity distance DL/ Mpc	420-180	440 ₋₁₉₀	1000_{-500}
Source redshift z	$0.09^{+0.03}_{-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20^{+0.09}_{-0.09}$
Sky localization $\Delta\Omega/deg^2$	230	850	1600

 10^{12}

1013

 λ_g (km)

10¹⁵

1016

 10^{17}

10¹⁴

From Abbott et al, "Tests of general relativity with GW150914", 2016

0.0

 10^{9}

10¹⁰

10¹¹

KAGRA

LIGO India

Future Observing

GEO600

VIRGO

LIGO Livingston

Operational Under Construction Planned

LIGO

Gravitational Wave Observatories

<u>Living Rev. Relativity 19</u> (2016), 1

LIGO Planned LIGO-Virgo Observing

orientation-averaged distance for BNS detection with SNR = 8

<u>Living Rev. Relativity 19</u> (2016), 1

LIGO Expectations for future runs

Probability of observing

- N > 2 (blue)
- N > 10 (green)
- N > 40 (red)

highly significant events, as a function of surveyed timevolume.

Summary

- GW150914 and GW151226 are the first direct detections of GWs and the first observations of binary black hole mergers.
- GW150914 contains the *most massive known stellar-mass black holes*.
- GW150914 and GW151226 provide the opportunity *test General Relativity* in the large velocity, highly nonlinear regime.
- LIGO resumed the search for gravitational waves on November 30, 2016.

- We expect to observe many more binary black hole mergers in the coming years, as well as binaries containing neutron stars.
- Continue to look for electromagnetic counterparts to gravitational wave signals.

