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Gravitational solitons do not exist

In 4d Einstein-Maxwell theory consider solutions which are

I Stationary (time-independent)

I Globally hyperbolic ⇒ topology R× Σ

I Σ complete, asymptotically flat with a single asymptotic
region

Such a solution could be regarded as a gravitational soliton

Theorem Serini, Einstein, Pauli, Lichnerowicz the only such solution is Minkowski
spacetime!

This result extends to a large class of 4d supergravity theories
Breitenlöher, Maison & Gibbons 1988



Gravitational solitons do exist

But they require compact extra dimensions e.g.

I Static Kaluza-Klein bubble

ds2 = −dt2 + (1− 2M/r)dz2 + (1− 2M/r)−1dr2 + r2dΩ2

z ∼ z + 8πM

I Kaluza-Klein monopole

ds2 = −dt2 + ds2(EuclideanTaub−NUT)



5d microstate geometries Bena & Warner 2005

Compact extra dimensions are not necessary - 5d supergravity
admits a large class of solutions that are:

I Asymptotically flat

I Stationary: Killing vector field ∂/∂t timelike near infinity

I Globally hyperbolic

I Topology R× Σ where Σ is complete and has non-trivial
2-cycles

I Supported by fluxes wrapping 2-cycles

I Rotating: non-zero angular momenta J1, J2
I No event horizon: these are not black holes



10d microstate geometries

Solitonic solutions of type IIB supergravity in 10 dimensions Maldacena

& Maoz 2001, Lunin, Maldacena & Maoz 2002; Giusto, Mathur & Saxena 2004; Bena & Warner 2005, . . .

Asymptotically R1,4 × S1 × T 4

3 charges Q1, Q5, QP associated to wrapped D1 and D5-branes,
Kaluza-Klein momentum around S1

Some solutions contain arbitrary functions

”BPS” inequality M ≥ |Q1|+ |Q5|+ |QP | saturated when solution
is supersymmetric



Fuzzball conjecture (Mathur)

Consider a black hole in 5 asymptotically flat dimensions

This has large entropy S = A/(4G5) so N = eS quantum
microstates

Conjecture: some (all?) of these microstates are described
geometrically by classical microstate geometries.

Much effort has gone into constructing explicit microstate
geometries and counting them.

I will discuss the classical stability of these solutions.



Ergoregion instability

Non-supersymmetric microstate geometries have an ergoregion
where ∂/∂t become spacelike Jejalla et al 2005

Spacetime with ergoregion but no horizon is likely to be unstable:
Friedman 1978, Moschidis 2016

I Linear perturbations can have negative energy in ergoregion

I Energy radiated to infinity always positive

I So negative energy can only get more negative (if there is no
horizon)

Exponentially growing linearized perturbations exist: instability!
Cardoso, Dias, Hovdebo & Myers 2006



Supersymmetric microstate geometries

From now on: 5d supersymmetric 3-charge microstate geometry.

String theory folklore: (sufficient) supersymmetry ⇒ stability.

I will argue that these solutions are actually unstable. The
instability arises from a geometrical property of these solutions.



Evanescent ergosurface

Kiling field V = ∂/∂t timelike everywhere except on a timelike
hypersurface S. V is null on S.

S is an ergosurface without an ergoregion Gibbons & Warner 2013

V is null on S ⇒ infinite redshift relative to infinity (supports
fuzzball idea)



Geodesics

Define conserved energy for geodesic with momentum P:
E = −V · P. Then V causal ⇒ E ≥ 0

V b∇bVa = −V b∇aVb = ∇a(−V 2/2)

RHS vanishes on S because −V 2 minimized there. Hence V is
tangent to null geodesics on S (not true on a general ergosurface).

These geodesics have zero energy.

An evanescent ergosurface is a timelike hypersurface that is
ruled by zero energy null geodesics.



Heuristic argument for instability

Consider a massive uncharged particle near S (e.g. KK mode of
T 4, or a small black hole)

Leading order: particle moves on timelike geodesic, energy E > 0

Particle coupled to supergravity fields: slowly loses energy e.g. to
gravitational radiation

E decreases: trajectory will approach energy-minimizing geodesic

Lowest energy geodesics are the zero energy null geodesics on S

E is small but particle will have huge local energy so large
backreaction, i.e, instability!



Nature of instability

Particle approaches orbit of V

Orbits of V are stationary relative to infinity: resist frame dragging
caused by rotation of background spacetime so must have negative
angular momentum (if background angular momentum is positive)

Particle will accelerate to approach a null orbit with (large)
negative angular momentum. (Small) energy and (large) positive
angular momentum will be radiated to infinity.

So instability involves large backreaction near S with a small
change in energy, and large reduction in angular momentum of
background.

Guess: collapse to form an almost supersymmetric black hole -
BMPV or black ring.



Instability in supergravity

Can we see an instability involving only massless supergravity
fields?

Heuristic argument involves coupling to radiation so instability
likely to be nonlinear

But even linear stability is not obvious...



Linear stability

Can find decoupled linear perturbations behaving as massless scalar
Cardoso, Dias & Myers 2007

Supersymmetry ⇒ energy always non-negative. If energy small
initially then energy remains small.

For a supersymmetric microstate geometry, this argument excludes
exponential growth.

However: the conserved energy degenerates on S. For example
energy-momentum current for massless scalar:

ja = −T a
bV

b = −∂aΦV · ∂Φ +
1

2
V a(∂Φ)2

vanishes on S if ∂aΦ ∝ Va there.

Small conserved energy does not prevent ∂Φ becoming large on S.



Nonlinear stability

Let’s assume that we do have linear stability.

Proofs of nonlinear stability (e.g. Minkowski spacetime) rely on
sufficiently rapid decay of linear perturbations to infinity or across
a black hole horizon

For example: AdS has no decay, suggests nonlinear instability
Dafermos & Holzegel 2006, confirmed numerically Bizon & Rostworowski 2011.

Minkowski or asymptotically flat black holes: t−p decay, expect
nonlinear stability.

So how fast do linear perturbations decay in supersymmetric
microstate geometries?



Quasinormal modes

We can investigate decay of waves in these geometries by finding
quasinormal modes:

Φ(t, x) = e−iωtF (x) ω = ωR + iωI ωI < 0

Boundary conditions: outgoing at infinity.

For black holes, it is known that there is a connection between
quasinormal modes and null geodesics via geometric optics Ferrari &

Mashoon 1984.

Quasinormal modes correspond to trapped null geodesics of the
black hole.



Trapping

A null geodesic on the photon sphere r = 3M of a Schwarzschild
black hole is trapped: it remains forever in a finite region of space.

Kerr has trapped null geodesics for some range r1 < r < r2.

This trapping is unstable: if perturbed, such a geodesic will escape
to infinity or fall into the black hole.

Geometric optics/WKB lets us determine ω from properties of
these geodesics. For example in Kerr Yang et al 2012

Φ = e−iωte imφΘ`(θ)R(r) |m| ≤ `

For `� 1 we have ωR/m ≈ E/L where L is angular momentum of
geodesic. ωI = O(1) is determined by the timescale for the
instability of the trapping.



Stable trapping in microstate geometries

The zero energy null geodesics on S exhibit stable trapping
because they minimize the energy.

So geometric optics suggests there are quasinormal modes with
very small ωI , i.e., very slow decay. This is because the waves have
to tunnel (classically) through a large potential barrier to escape.

Since these geodesics have E = 0 we expect the associated
quasinormal modes to have ωR ≈ 0.



Calculation of quasinormal modes

We have calculated ω for the most symmetrical 2-charge and
3-charge microstate geometries Maldacena & Maoz 2001, Giusto, Mathur & Saxena 2004

These geometries have 2 rotational symmetries ∂/∂φ, ∂/∂ψ and a
”hidden” symmetry that enables separation of variables:

Φ = e−iωte imφφe imψψΘ`(θ)R(r) ` ≥ |mφ|+ |mψ|

For mφ < 0 and `� 1 a matched asymptotic expansion gives
quasinormal modes with

ωR = O(1) ωI = −βe−2` log `

Very slow decay at large `!



More general microstate geometries

These calculations were for the most symmetrical microstate
geometries.

The slowly decaying quasinormal modes are localized around the
zero energy null geodesics on S.

These null geodesics exist whenever there is an evanescent
ergosurface so expect slowly decaying quasinormal modes for any
supersymmetric microstate geometry..



Slow decay

Proofs of nonlinear stability require uniform decay of some
non-degenerate energy functional E1(t) quadratic in ∂Φ

For example: could take E1(t) to be energy according to ”zero
angular momentum” observers with velocity parallel to −dt

Ideally E1(t) ≤ g(t)E1(0) with g(t) independent of Φ and
g(t)→ 0 as t →∞

Not possible because of trapping Sbierski 2013 but maybe
E1(t) ≤ g(t)E2(0) where E2 quadratic in ∂Φ and ∂2Φ



Slow decay

E1(t) ≤ g(t)E2(0)

Black holes (unstable trapping): g(t) = t−p Dafermos & Rodnianski

Previous examples with stable trapping: AdS black holes Holzegel &

Smulevici 2013, ultracompact neutron stars Keir 2014:

g(t) = (log(2 + t))−2

Waves decay at least this fast in a large class of asymptotically flat
spacetimes that are either strictly stationary or contain an event
horizon Moschidis 2015

Our quasinormal modes imply that the decay must be even slower
than this for supersymmetric microstate geometries. Slowest decay
of any known asymptotically flat spacetime!



Comparison with black holes

Extremal Reissner-Nordstrom: t−p decay, slowest decaying modes
have low ` Aretakis 2012

Supersymmetric microstate geometry: decay slower than
(log(2 + t))−2, slowest decay modes have large `

Qualitative differences between behaviour of linear fields in black
hole geometries and microstate geometries



Nature of nonlinear instability

Slowest decay for high ` modes localized around S: suggests
nonlinear instability will be short-distance effect

Maybe stable trapping leads to formation of tiny black hole as in
AdS instability

This would behave as in our heuristic argument, accelerates to
high speed so larger backreaction

Natural guess for endpoint: collapse to near-supersymmetric black
hole

Remark: ”black lens” solutions Kunduri & Lucietti 2014 also have
evanescent ergosurface so likely to suffer similar instability...



Making it rigorous (Keir)

For the most symmetrical microstate geometries:

I Solutions of wave equation are bounded

I Uniform decay E1(t) ≤ g(t)E2(0) cannot be faster than

g(t) =

[
log log(2 + t)

log(2 + t)

]2



Obstacle problem

Logarithmic decay outside of an 
arbitrary obstacle (Burq, 1998)

Waves in supersymmetric microstate geometry decay slower than
for any arrangement of mirrors in flat spacetime!



Growth of energy

Keir will prove (in forthcoming work) that there are solutions with
small E1(0) for which E1(t) can become arbitrarily large.

Such solutions have large E2(0). If E2(0) small then looks like
E2(t) can become large etc.

If so, whatever (Sobolev) norm one imposes on the initial data,
this norm can become large in time evolution.

This looks like an instability even for linear perturbations.

These results hold for a large class of microstate geometries.



Alternative endpoint Marolf, Michel, Puhm 2016

Instability is a short-distance effect: stringy α′ corrections may be
important

An entropic argument applied to stringy microstates suggests that
these effects will lead to a different endpoint: microstate geometry
with α′-scale features

”A rough end for smooth microstate geometries”: non-generic
smooth microstate geometries evolve to generic rough microstate
geometries



Summary

Supersymmetric microstate geometries are conjectured to describe
individual black hole microstates.

Heuristic ”particle” argument indicates nonlinear instability.

Stable trapping of null geodesics implies very slow decay of linear
perturbations: slower than any known asymptotically flat
spacetime.

This decay is qualitatively different from decay in a black hole
geometry.

Decay too slow for proving nonlinear stability so expect instability.

Possible endpoints: collapse to near-supersymmetric black hole, or
stringy corrections become important.


